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(b) Solution 1: lim
x→0

sin 6x

x cos 3x
= lim
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2 sin 3x cos 3x
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= 2×3lim
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Solution 2: lim
x→0

sin 6x

x cos 3x
= lim
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2. y0 = − 1
x2
, y0 = −4 at x = ±1

2
=⇒ y0 = −4 at ¡−1

2
,−2¢ or ¡1

2
, 2
¢
.

Equations of tangent line are: y + 2 = −4 ¡x+ 1
2

¢
& y − 2 = −4 ¡x− 1

2

¢
3. lim

x→0±
f (x) = lim

x→0±
x (x+ 1)

±x = ±1 . =⇒ f has a jump discontinuity at x = 0 but not a

removable discontinuity. So, It cannot be continuous for any value of f at x = 0.

4. 2x + y = 200, Area = A = xy = x (200− 2x) = 200x − 2x2 =⇒ dA

dx
= 200 − 4x .

x = 50 is the only critical number of A ,
d2A

dx2

¯̄̄̄
x=50

= −4 < 0 =⇒ A is maximum at

x = 50, y = 100 and Amax = 5000 m2.

5. Let f (x) = 2x5 + x− 1..
(I ) The exsistence of the root: f is contionuous on [0, 1] , f (0) = −1 < 0 & f (1) =
2 > 0. Form the Intermadiate Value Theorem ∃ a ∈ (0, 1) such that f (a) = 0, i.e., the
equation has a real solution in (0, 1) .

[OR, f is continuous on R, lim
x→±∞

f (x) = ±∞, then f has a real root]

(II ) The uniqueness of the root: f 0 (x) = 10x4+1 > 0 for all x ∈ R. So, f is increasing
and since f has a root in (0, 1) , then this root must be unique.

OR By using Rolle’s Theorem. Suppose contrarily, x1, x 2 are two distinct roots (x1 <
x2, say). Thus, f (x1) = 0 = f (x2) , f is continuous on [x1, x2] and differentiable on
(x1, x2) (f is polynomial). Therefore, from Rolle’s Theorem, ∃ c ∈ (x1, x2) , such that
f 0 (c) = 0, but, 10c4 + 1 > 0, which contradicts Rolle’s Theorem.

6. f 0 (x) = d
dx

 x2Z
0

1

sin t+ 5
dt

 = 2x
sinx2+5

. Since, sinx2 + 5 ≥ 4, so, the only critical

number of f is x = 0, where f 0 (x) = 0.
I (−∞, 0) (0,∞)
sign of f 0(x) − +
Conclusion & %

.

f (0) =

02Z
0

1

sin t+ 5
dt = 0, is the local minimum of f.

7.
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0
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2
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2
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0
= 5

2
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2Z
−1

|x| dx = 5
6
.



f (a) = |a| = 5
6
=⇒ a = ±5

6
∈ [−1, 2] .

8. (a) Put u = x4 − 4x =⇒ udu = 4 (x3 − 1) dx =⇒
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(b) Put u = 1+sin t, u (0) = 1&u
¡
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= 2 =⇒ udu = cos t dt =⇒
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9. The Area =
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10. (a) Revolution about the line x = 3 :

V olume = 2π
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OR V olume = π
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(b) Revolution about the line y = −2 :

V olume = π
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dx
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